Der Kontingenzkoeffizient ist ein Maß, um die Stärke des Zusammenhangs zwischen zwei nominalskalierten Variablen in einer Kreuztabelle zu quantifizieren. Er ergänzt Tests wie den Chi-Quadrat-Test, indem er die Stärke eines Zusammenhangs unabhängig von der Stichprobengröße ausdrückt.
Das Chi-Quadrat-Testverfahren (χ²) ist eines der grundlegenden statistischen Werkzeuge, um Zusammenhänge zwischen diskreten Variablen zu analysieren. Es wird häufig verwendet, um Hypothesen über Verteilungen und Unabhängigkeiten zu überprüfen.
Die Welt ist voller Unsicherheiten, und Mathematik bietet uns Werkzeuge, um diese zu verstehen und vorherzusagen. Eine zentrale Rolle in diesem Kontext spielt die Zufallsvariable, ein Konzept aus der Wahrscheinlichkeitstheorie. Doch was genau ist eine Zufallsvariable, warum ist sie wichtig, und wie können wir sie verwenden?
Die Wahrscheinlichkeitsrechnung bildet die Grundlage vieler statistischer Verfahren. Sie hilft uns, mit Unsicherheiten und zufälligen Ereignissen umzugehen, indem sie die Wahrscheinlichkeit für das Eintreten bestimmter Ereignisse quantifiziert. In diesem Blog-Post erkläre ich dir die Grundzüge der Wahrscheinlichkeitsrechnung, sodass du ein solides Fundament hast, um weiter in die Statistik einzutauchen.
In der Statistik geht es oft darum, den Zusammenhang zwischen zwei metrischen Variablen (z.B. Körpergröße und Gewicht) zu untersuchen. Dafür gibt es verschiedene Maße, um diese Abhängigkeit zu quantifizieren. Die bekanntesten davon sind der Bravais-Pearson-Korrelationskoeffizient und der Spearman-Rangkorrelationskoeffizient. In diesem Blog-Post zeige ich dir, wie diese Maße funktionieren, wann du sie anwendest und wie du sie in R berechnen kannst.
In der Statistik begegnen uns häufig diskrete (kategoriale) Variablen, wie zum Beispiel Geschlecht, Bildungsniveau oder Antwortkategorien bei einer Umfrage. Um den Zusammenhang zwischen solchen Variablen zu analysieren, nutzt man Zusammenhangsmaße speziell für diskrete Daten. In diesem Blog-Post erfährst du, welche Maße es gibt, wie sie funktionieren und wie du sie in R berechnen kannst.
Kausalität ist eines der grundlegendsten Konzepte in der Wissenschaft: Es beschreibt, wie Ursachen zu Wirkungen führen. Wenn du zum Beispiel einen Stein ins Wasser wirfst, verursacht das die entstehenden Wellen. In der Statistik spielt die Kausalität eine besondere Rolle, da wir oft Zusammenhänge zwischen Variablen untersuchen, um herauszufinden, ob und wie eine Veränderung in einer Variablen eine andere beeinflusst.
Die Visualisierung von Daten ist ein zentraler Bestandteil der statistischen Analyse. Sie hilft dabei, komplexe Zusammenhänge auf einfache Weise zu präsentieren und Muster oder Auffälligkeiten in den Daten zu erkennen. Besonders im Zeitalter der Datenwissenschaft ist die Fähigkeit, Daten effektiv zu visualisieren, ein wertvolles Werkzeug. In diesem Beitrag gehen wir auf einige der wichtigsten Techniken zur Visualisierung statistischer Daten ein und zeigen, wie man diese in R umsetzt.
In der Statistik spielt die Standardisierung eine wichtige Rolle, wenn es darum geht, unterschiedliche Daten auf eine vergleichbare Basis zu bringen. Diese Methode ist besonders hilfreich, wenn Daten mit verschiedenen Mittelwerten und Standardabweichungen vorliegen.
Wenn Du dich fragst, welche Statistik-Software am besten zu Dir passt, gibt es nicht die eine perfekte Antwort. Es kommt darauf an, was Du vorhast, wie tief Du einsteigen möchtest und welche Tools Dir sympathisch sind. Hier sind vier der relevantesten Statistik-Programme, die Du kennen solltest – ohne Ranking, weil jedes seine Stärken und Schwächen hat.